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The classical fourth-order Orr-Sommerfeld problem which arises from the study 
of the linear stability of channel flow of a viscous fluid is generalized to include 
the effects of a temperature-dependent fluid viscosity and heating of the channel 
walls. The resulting sixth-order eigenvalue problem is solved numerically using 
high-order finite-difference methods for four different viscosity models. It is found 
that temperature effects can have a significant influence on the stability of the 
flow. For all the viscosity models considered a non-uniform increase of the viscosity 
in the channel always stabilizes the flow whereas a non-uniform decrease of the 
viscosity in the channel may either destabilize or, more unexpectedly, stabilize the 
flow. In all the cases investigated the stability of the flow is found to be only weakly 
dependent on the value of the PCclet number. We discuss our results in terms of 
three physical effects, namely bulk effects, velocity-profile shape effects and thin-layer 
effects. 

1. Introduction 
A fundamental hydrodynamic stability problem is that of determining the stability 

of parallel viscous shear flow. One particular question, of great practical interest, is 
to determine the largest Reynolds number, R, at which channel flow of a viscous 
fluid may retain its steady laminar form. Applying linear stability theory to this 
problem yields the classical Orr-Sommerfeld equation derived by Orr (1907) and 
Sommerfeld (1908) which, together with the appropriate no-slip boundary conditions 
form a fourth-order eigenvalue problem. Although only a linear ordinary differential 
equation, the Orr-Sommerfeld equation has proved difficult to solve. Asymptotic 
solutions have been obtained by Heisenberg (1924), Tollmien (1929,1947) and Lin 
(1945a,b), and uniform asymptotic approximations have been obtained by Ng (1977) 
and Lakin, Ng & Reid (1978). Despite the difficulties caused by the stiffness of 
the Orr-Sommerfeld equation (for example, there are significant changes in the 
eigenfunctions near both walls and, for large R, in the vicinity of the critical layer), 
numerical solutions have been obtained using a variety of techniques by Kaplan 
(1964), Grosch & Salwen (1968), Gary & Helgason (1970), Orszag (1971) and Sloan 
(1977) among many others. The numerical results confirm the conclusions of the 
asymptotic analysis in identifying a finite critical Reynolds number, &, such that 
plane Poiseuille flow is linearly unstable to certain disturbances for R > R, and is 
linearly stable to all disturbances for R < &. If the maximum velocity and half the 
channel width are used as velocity and length scales respectively then Orszag’s (1971) 
results yield & N 5772. 
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The present work is concerned with generalizing the classical Orr-Sommerfeld 
problem to include the effects of a temperature-dependent fluid viscosity and heating 
of the channel walls. This problem was first addressed by Potter & Graber (1972) using 
a particular viscosity model relevant to water, but they neglected any disturbance to 
the basic-state temperature distribution and so obtained a modified fourth-order Orr- 
Sommerfeld equation which they solved numerically using Kaplan’s (1964) filtering 
technique. In their study Potter & Graber (1972) held the temperatures of the 
channel walls fixed and restricted attention to when viscosity decreases as temperature 
increases. In this case they found a monotonic decreasing relationship of & with 
the temperature difference across the channel, finding, for instance, that a 78 K 
temperature difference between the channel walls approximately halved &. In the 
present work we examine the approximation adopted by Potter & Graber (1972). We 
find it to be exact when the Pklet number is zero and investigate its accuracy when 
the Pklet number is non-zero. Recently Schafer & Herwig (1993) derived asymptotic 
equations for the present problem in the limit of a small non-dimensional viscosity 
gradient with respect to temperature which they solved numerically. At leading order 
they recovered the isothermal Orr-Sommerfeld equation and thermal effects entered 
at first order. They solved the leading-order problem using a shooting technique 
with Gram-Schmidt orthonormalization and the first-order problem using a multiple 
shooting method. These authors devoted most of their attention to the problem in 
which the heat flux is held constant on the channel walls, though they also presented 
some results for the problem in which the temperature of the channel walls is held 
constant in order to compare their results with those of Potter & Graber (1972). In 
this case Schafer & Herwig found that R, was a monotonically decreasing function 
of the temperature difference across the channel. 

The present work investigates the linear stability of parallel shear flow of a fluid 
with temperature-dependent viscosity in a parallel-sided channel the walls of which 
are maintained at (different) constant temperatures. Numerical results are obtained 
using a high-order finite-difference method on an irregular grid with the resulting 
linear algebraic eigenvalue problem solved using the QZ matrix eigenvalue technique. 
In contrast to Potter & Graber (1972) a disturbance is permitted to the basic-state 
temperature distribution, while in contrast to Schafer & Herwig (1993) the stability 
equations are solved non-asymptotically. Results for four different viscosity models 
are presented and discussed. It might be expected that heating, which causes viscosity 
to decrease throughout the channel, would always destabilize the flow; perhaps 
surprisingly this is not always found to be the case. 

2. Governing equations 
Adopting a Cartesian coordinate system whose origin is on the centreline of the 

channel with x2 = y the cross-channel ordinate and x1 = x parallel to the channel 
walls, we introduce the non-dimensional variables 

T. - TI 
I=- X. u = -  U* p = -  P* t=t*x, V p=G’  ’* T = 2 (-) , (2.1) 

L’ V’  pV2, Tu - Tl 

where L, p ,  T,, TI ,  M denote half the channel width, density, temperature at y. = L, 
temperature at y. = -L, and viscosity at y* = -L respectively; 

1 1 2  
J L  

Jl=- 
2M 
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FIGURE 1. Basic-state velocity profiles uo(y) corresponding to the viscosity p ( T )  = ePKIT for the 
values of K1 indicated. 

3.1. Model 1 

If we adopt the exponential viscosity/temperature relationship 

p ( ~ )  = ePKIT (3-5) 

then solving equation (3.4) for the velocity uo(y) yields 

(3.6) 
2 

K1 
uo(y)  = -- [l + cothK1 + ( y  - c~ thKl )e~ l ( ’+~) ]  . 

Velocity profiles for a number of different values of K1 are plotted in figure 1. 

3.2. Model 2 

We also consider the linear viscosity/temperature relationship 

p ( T ) = l - K 2 T  (3.7) 

which requires K2 < 1/2 in order for the viscosity to remain positive everywhere in 
the channel. The corresponding velocity is given by 

L A 

These velocity profiles are qualitatively similar to those in figure 1. 

3.3. Model 3 

The results obtained for the viscosity models 1 and 2 suggested that it would be 
interesting to investigate a viscosity/temperature relationship for which the viscosity 
falls more rapidly near the hot wall (y = 1) than in the rest of the channel as 
the temperature increases. Accordingly we also consider the viscosity/temperature 
relationship 

p ( ~ )  = 1 + b(1- eK3*) (3.9) 
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FIGURE 2. The viscosity relationship p( T )  = 1 + b( 1 - eK3T) when K3 is chosen so that p ( 2 )  = 0.01 
for the values of b indicated. 

in which, unless otherwise stated, we will assume that b > 0. In order for the viscosity 
to remain positive everywhere in the channel we require that 

(3.10) 

For reference we plot a selection of these viscosity/temperature relationships in 
figure 2. Note that when K 3  < 0 then 1 < p ( T )  < 1 + b and hence p ( T )  tends 
uniformly to 1 as b + 0. However, when K3 > 0 we can always make p(2)  as small as 
we choose by selecting K3 sufficiently close to k3 for any value of b, with, as shown 
in figure 2, a less viscous layer near y = 1 becoming more prominent as b + 0. We 
also note that, for a given value of b, p( T )  + 1 + b as K 3  + -a if T > 0, but with 
p(0) = 1. The corresponding velocity is given by 

(3.11) 
1 

log (I  + b[ l  - eK3(l+Y) 

where we have written y = (1 + b)-I and introduced 

[K3 log y - Li~(by)] + D 

and where 

O log( 1 - t) Zk 
d t = C -  

k2 
k = l  
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is the second polylogarithmic function. When K3 > 0, and also for K3 < 0 when (K3I 
is sufficiently small, velocity profiles are again qualitatively similar to those plotted in 
figure 1. Otherwise, it is easily found that 

(3.12) 
1 

lim uo(y) = -(I - y2) ,  
K,+-CC l + b  

so that the velocity profile is ultimately symmetrical as K3 -+ -a. 

3.4. Model 4 

To facilitate comparison with the previous investigation performed by Potter & 
Graber (1972) we also use the non-dimensional viscosity/temperature relationship 
given by 

p( T )  = ce(K47-+W' (3.13) 

which has been proposed as a model for the viscosity for water. In the numerical 
calculations we fix the value of F = 0.16393 which in turn fixes 1/C = 445.9 and 
vary K4 in order to permit comparison with the results of Potter & Graber. The 
corresponding velocity is given by 

(3.14) 

where we have introduced the constant 

and where 

r(4 zo, z1) = e-tta-l dt 

is the generalized Gamma function. These velocity profiles are again qualitatively 
similar to those in figure 1. 

4. Linear stability 
In accordance with classical linear stability theory we seek solutions in the form 

u = uo(y)  + uI(x,y,z, t) with similar expressions for v, w, p and T ,  where the pertur- 
bation is assumed to have the normal mode form 

7 (4.1) i(ax+flz-aut) u1 = ;i(y)e 

with similar expressions for v1, w1, p1 and TI. The wavenumbers a and p are 
required to be real in order that the disturbance remains bounded as x, z -+ +a. 
Thus the growth (or decay) rate of a given mode is given by aoi where oi is 
the imaginary part of the eigenvalue o, and the mode will grow exponentially in 
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time if aoi > 0 and will decay exponentially if aoi < 0. We determine the linear 
stability of the flow by selecting the mode with the largest growth rate; should 
this be positive the flow is unstable, should it be negative the flow is stable. If 
the growth rate is zero the flow is neutrally stable. Substituting into the governing 
equations (2.4) and neglecting second- and higher-order products of the perturbations 
we obtain 

1 
R 

-iaii(o - uo) +cub = -iaB + - ( ~ ( T ~ ) [ G ”  - (a2 + p2)i;1 + f p ’ ( ~ o ) u : )  

1 1 
R R 

+ - ?p”(To)T;ub + -p’(To)(TAii’ + f ’ub  + iav^T;), 

1 1 
-iav^(g - uo) = -j’ + -p( To)[6” - (a2 + p2)63 + -p’( To)(2T;6’ + iafub), 

R R 

(4 .2~)  

(4.2b) 

i d  + 6’ + i p s  = 0, (4.2d) 

(4.2e) 
1 

pe 

where a prime denotes differentiation. The above normal mode perturbation equations 
are subject to the boundary conditions 

-iaf(o - u0) + OT; = -[?” - (a2 + p 2 ) f ] ,  

A 

$,=;=\.; ,=T=O (4.3) 

at y = +1 and form an eigenvalue problem whose solution can be expressed in 
the form 0 = a(a,P,R,P,). As in the isothermal case we may now make use of 
Squire’s theorem (see Squire 1933) which ensures that it is sufficient to consider 
two-dimensional disturbances for which the perturbation equations may be obtained 
from equations (4.2) by setting p = i i j  = 0. Details of Squire’s theorem applied to the 
present non-isothermal problem are given by Wall (1996). Without loss of generality 
we take a 2 0 and so a given mode is unstable if ci > 0, stable if oi < 0 and neutrally 
stable if ui = 0. 

Since we are now only considering a two-dimensional disturbance it is convenient 
to introduce a stream function for the perturbation velocity, 

YJ (x, y ,  t) = $(y)eia(x-ut) (4.4) 

defined in the usual way (6 = $’, 6 = -iaQ), so that the incompressibility condition 
(4.2d) is automatically satisfied. Upon differentiating equation (4 .2~)  with respect to 
y and substituting in (4.2b) for p’ we obtain the thermal Orr-Sommerfeld equations 

1 
pe 

ia(u0 - o)T - iaT;y = -(T” - a 2 ~ ) ,  (4.6) 

subject to the boundary conditions 

y(k1) = 0, y’(*l) = 0, T(+l) = 0, (4.7) 
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where we have introduced the operators 

D1 = 2T' ($ - a2$)  + T: ($ + a 2 ) ,  (4.8~) 

(4.8b) 

(4 .8~)  

(4.8d) 

and have dropped the hats for clarity. The equations (4.5) and (4.6) together with the 
boundary conditions (4.7) form a sixth-order eigenvalue problem for IT as a function 
of CI, R and P,. Note that in the special case T = 0, ,u = 1 we recover the familiar 
fourth-order isothermal Orr-Sommerfeld problem. 

5. Computational details 
5.1. Numerical method 

The numerical method used in the present work is an extension of Gary & Helgason's 
(1970) finite-difference technique for solving an eigenvalue problem posed by a single 
linear ordinary differential equation (with appropriate boundary conditions) to solve 
n coupled linear equations in O j ,  j = 1,. . . , n, where in the present application n = 2. 
Details of this numerical technique are given by Wall (1996). A FORTRAN code was 
written to solve this eigenvalue problem using a finite-difference method and is capable 
of adopting arbitrary-order approximations for any order of derivative appearing in 
either the equations or the boundary conditions limited only by the number of grid 
points, N + 1, used. We can adjust the number of stencil points used at external nodes 
if we wish to increase, decrease or maintain the order of approximation there. Such 
flexibility demands an efficient algorithm for calculating finite-difference weights and 
this was accomplished using the notably short and fast algorithm recently discovered 
by Fornberg (1988). For a given (not necessarily regular) set of grid points (XO, . . . , xN}, 
the point at which approximations are required x = (not necessarily a grid point) 
and highest order of derivative of interest, m, Fornberg's algorithm determines weights 
dfl such that the approximations 

are all optimal in the sense that they permit the maximum order of approximation 
possible for a stencil consisting of i + 1 points (indeed for the case m = 0 this 
algorithm offers the fastest way known to perform polynomial interpolation at a 
single point). After discretization we require the solution of a generalized linear 
algebraic eigenvalue problem in the form A6 = LBO, where A and B are n(N + 1)th- 
order square matrices, 0 = (Ql0, ell,. . . , O I N ,  02,,. . . ,02N,  . . . . . . , OnO,. . . , OnN) where 
Qji represents our approximation to Q,(xi) for j = 1,. . . , n, i = 0,. . . , N and 1 is the 
corresponding eigenvalue of the system. We solve for the eigenvalues (and eigenvectors 
if required) using the QZ algorithm described, for example, by Wilkinson (1979) and 
implemented using the NAG routine F02GJF. One facet of this method is that there 

T 
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K2 SO 

0.46 14 
0.47 17 
0.475 25 
0.48 34 

TABLE 1. Optimum stretching parameters so for the linear viscosity relation 
p ( T )  = 1 - K2T as K2 --+ 112. 

is no distinction in terms of computational cost between full and non-full matrices 
so there is no additional cost in adopting high-order finite-difference methods. The 
computational cost of the QZ algorithm is O ( N A , B ~ )  where N A , ~  is the order of 
the matrices A and B and since in practice the majority of the runtime is taken 
up by the QZ algorithm rather than obtaining the matrices A and B doubling the 
number of grid points used approximately octuples the runtime of the code. The 
code was initially successfully tested on several test problems with known analytical 
or numerical solutions; details are again given by Wall (1996). 

To obtain the numerical results presented in the present work we adopted the same 
order of approximation, J ,  for all the derivatives and found that in most cases an 
approximate empirical rule for the optimum value of J was 

N 
J = - + 2 .  

10 
The problem was solved on an irregular grid xi for i = 0,. . . , N ,  which was obtained 
from the regular grid si for i = 0,. . . , N (where SO = 0 and sN = 1) through application 
of the mapping 

(5.3) 
where 

xi = 2X(si) - 1 for i = 0,. . . , N ,  

1 tanh[(u - 1/2)C] 
2 2 tanh C / 2  ’ 

X(u) = - + (5.4) 

is Vinokur’s (1983) antisymmetric stretching function which clusters points away from 
the centre of the channel and towards the critical layers and the channel walls. The 
slope parameter 

dX C 
s o =  qu=o= XI =m (5.5) 

u= 1 

is chosen by the user. The value SO = 4.5, an optimum choice for solving the 
isothermal problem on the whole channel, was used as a starting point for non- 
isothermal calculations and was adjusted as it becam: necessary. In particular for 
viscosity model 2 as K2 + 1/2 and model 3 as K3 + K3 the eigenfunctions undergo 
rapid change near the hot wall y = 1 and this necessitated increasing the value of so; 
values of SO used for model 2 as K Z  + 1/2 are given in table 1. 

For a given temperature/viscosity relationship and value of P, we can calculate the 
(discrete) eigenvalue spectrum for o at each point in the (&a)-plane. Ordering the 
spectrum of eigenvalues according to 

we define the point (R,a) to be stable if 0 1 ~ )  < 0, unstable if 01’) > 0 and neutrally 
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stable if cr;') = 0. Calculations were made on a DEC 3400s mainframe computer 
and to perform one evaluation of the o-spectrum took around 15 s for N = 100 and 
J = 12 if eigenvectors were not simultaneously calculated and around 30 s if they 
were. 

5.2. Marginal stability curve and critical-point calculation 

In order to determine the stability of the flow we need to calculate the marginal 
stability curve in the (R,a)-plane on which cri(') = 0 which separates stable from 
unstable regions. For a given viscosity model and value of P, this is accomplished 
through use of the van Wijngaarden-Dekker-Brent root-finding method described in 
Brent (1973). We iterate towards the marginal Reynolds number, &, for fixed a on 
the lower branch of the marginal stability curve and because the upper branches of the 
marginal stability curves are typically fairly flat it was found to be more convenient 
to iterate towards the marginal wavenumber, a,, for fixed R on the upper branch. 
On each curve we may further identify the critical Reynolds number, &, which is the 
global minimum of the marginal stability curve with respect to R. The value of & is 
of prime importance since any flow with R < & is linearly stable to all disturbances 
whilst for R > & there exist disturbances to which the basic state is unstable. We 
denote the values of a and r~ when R = R, by a, and cr, respectively with the latter, 
of course, being real since the critical point lies on the marginal stability curve. We 
calculate (R,, a,, 0,) through use of Brent's (1973) minimization algorithm applied to 
minimizing R,(a) in conjunction, of course, with the van Wijngaarden-Dekker-Brent 
root-finding method to iterate to the value of &(ap) corresponding to each successive 
estimate ap of a,. In most cases N = 80 together with a fractional tolerance for a, of 
0.1% was sufficient to find & to within 0.01% when an absolute tolerance of +O.l 
was used in finding each &. In practice, of the three values (&, a,, c,), usually a, was 
the slowest to converge and a larger value of N was sometimes required to obtain 
accurate values for this quantity. A larger value ,Of N was also required for viscosity 
models 2 as K 2  + 1/2 and model 3 as K3 ---f K3 since in these limits the rates of 
change of the respective eigenfunctions become very large near the hot wall ( y  = 1). 

6. Results 
In this section we present solutions of the thermal Orr-Sommerfeld problem given 

by equations (4.5) and (4.6) subject to (4.7) for the four viscosity models described 
by equations ( 3 3 ,  (3.7), (3.9) and (3.13). Further details, including marginal stability 
curves, values of cr on the marginal curves and critical eigenfunctions for all four 
viscosity models are given by Wall (1996). For all four viscosity models considered 
here, the Stability characteristics of the respective basic-state flows were found to be 
only very weakly dependent on the value of P,. Since all the results obtained by 
varying P, are qualitatively similar, in most cases we present results only for P, = 1. 
When K1 = K 2  = K4 = K3 = 0 we recover the isothermal Orr-Sommerfeld problem 
for plane Poiseuille flow where ,u = 1 for which we obtain 

(R:, IX:, 0,") = (5772.2218,1.020547,0.2640003) 

with N = 120 and J = 14 (converged to the figures quoted) in excellent agreement 
with earlier authors, for example the results obtained using a shooting method by 
Davey quoted in Drazin & Reid (1981). 
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FIGURE 3. Marginal stability curves when P, = 1 and p ( T )  = ecKIT for the values of K 1  indicated. 

On each curve the location of the critical point is shown by a dot. 

6.1. Model 1 
Figure 3 shows a selection of marginal stability curves calculated using the exponential 
viscosity/temperature relationship given by equation (3.5) for various values of K1 
when P, = 1. In figure 4 we plot R, - R:, a, - a! and cc - 0," against K1. It can 
be seen that R, decreases monotonically with K1 and we may thus conclude that 
the effect of heating the channel walls is always stabilizing if K1 < 0, and is always 
destabilizing if K1 > 0. The calculations also show that a: is the global minimum 
value of a, and that 0, is a monotonically increasing function of K1.  Figure 5 shows 
the critical eigenfunctions y and T for various values of K 1  when P, = 1, where we 
have normalized the eigenfunctions by setting y,(O) = 1. Clearly symmetry is lost for 
non-zero K1. 

It has been proposed that a mechanism for the instability of viscous channel flows 
is provided by the transfer of energy from the basic state to the disturbance via the 
Reynolds stress, S. In figure 6 we plot the critical Reynolds stress across the channel 
together with the location of the critical layers for various values of K1 when P, = 1, 
where in the present study we define 

When K1 > 0 the critical layer nearest the cold wall shifts towards the centre of the 
channel while the other critical layer shifts closer to the hot wall. This behaviour 
is reversed when K1 < 0. The Reynolds stresses peak close to the location of the 
critical layers in each case, suggesting that the instability mechanism is similar to that 
of the isothermal problem (the plot for K1 = 0 in figure 6). We note, however, that 
the Reynolds stresses near the hot-wall critical layer are clearly more important than 
those near the cold-wall critical layer when K1 > 0 and vice versa. 
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FIGURE 4. (a) R, - R:, ( b )  a, - a:, ( c )  0, - CT: plotted as functions of K 1  
for p( T )  = ecKIT when P, = 1. 

6.2. Model 2 
Figure 7 shows a selection of marginal stability curves calculated using the linear 
viscosity/temperature relationship given by equation (3.7) for various values of K 2  
when P, = 1. Figure 7 shows that the stability behaviour for this model is somewhat 
more complicated than for model 1. This is further illustrated in figure 8, where we 
plot the values of R, - R:, a, - a! and oc - o," against K2. Evidently R, increases 
monotonically as K2 decreases from zero as before. However, as K2 increases from 
zero, R, initially decreases, before reaching a global minimum and subsequently 
increasing monotonically, with our results suggesting that R, -, cc as K 2  -, 1/2. 
Thus the flow may be arbitrarily stabilized not only by making the magnitude of 
K 2  < 0 sufficiently large, but also by allowing K2 to approach sufficiently close to 
1/2. For any P, we can identify a global critical Reynolds number, R,"(Pe), with a 
corresponding global critical wavenumber a: (P,) and wave speed o,*(P,), which occurs 
at the value K 2  = K2i(Pe), for which any flow with R < R,' is stable to any disturbance 
for any value of K2 and for which any flow with R > R,' will be unstable to some 
disturbances for some values of K2. Typical values of R,', af, of and K2: for various 
values of P, are tabulated in table 2, and in figure 9 we plot R,", K2:, af and 0," against 
logl0(P,); there appears to be no simple relationship of the global critical point with 
the value of P,. For each value of P, we can identify a value of K2 which yields the 
same critical Reynolds number as the isothermal case: for instance if P, = 1 then 
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FIGURE 5. Critical eigenfunctions y and T for p ( T )  = e--"lT when K1 = -0.5, -0.25, 0, 0.25, 0.5 
and P, = 1. 

pe K2E 

0 0.262 
0.262 
0.262 

1 0.262 
10 0.262 
lo2 0.262 
lo3 0.257 
lo4 0.255 
lo5 0.251 

lo-' 0.262 

R,' 
4049.3 
4049.3 
4049.3 
4049.5 
4050.8 
4047.8 
4049.8 
4106.9 
41 16.9 
4131.2 

a: 
0.9974 
0.9974 
0.9974 
0.9974 
0.9975 
0.9975 
0.9974 
0.9955 
0.9963 
0.9978 

fJf 
0.3414 
0.3414 
0.3414 
0.3414 
0.3413 
0.3415 
0.3413 
0.3385 
0.3379 
0.3369 

TABLE 2. Values of K2f, R:, clf, of for the values of P, indicated for p ( T )  = 1-KzT. The calculations 
were made with N = 120 and J = 14. The values are accurate to the number of figures quoted. 

R, 1: R: when K2 N 0.4, although the critical wave speed c, N 0.367 is higher and the 
critical wavenumber a, N 0.97 is smaller than in the isothermal case. Figure 10 shows 
the critical Reynolds stress across the channel together with the location of the critical 
layers for various values of K 2  when P, = 1. The variation of the Reynolds stresses 
with K2 is qualitatively similar to that described in the previous section. Note that the 
critical Reynolds stresses corresponding to K 2  = 0 and K 2  = 0.4 are quite different. 

6.3. Model 3 
Figure 11 shows R, - R:, a, - a: and oc - c," plotted as functions of K3 when Pe = 1. 
When K3 < 0, figure 11 shows that while initially R, increases monotonically as K3 
decreases from zero, a global maximum RE*(Pe) is reached. Values of RE*(Pe), together 
with the corresponding values K3f*, aE*(Pe) and o;*(P,) for various values of Pe are 
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given by Wall (1996). Subsequently R, + &(b) as K 3  + -a where k ( b )  > R,". 
Since p ( T )  tends uniformly to unity in the limit b + 0 when K3 < 0 we expect to 
recover (R:, a!, 0,") in the limit b + 0; this is confirmed by our numerical results given 
in table 3, where we tabulate &(b) and the corresponding wavenumbers, &,(b), and 
wave speeds, 6,(b), when P, = 1. When K 3  > 0 the behaviour of the critical point 
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is clearly similar to that of viscosity model 2 when K2 > 0, with the flow arbitrarily 
stabilized as K3 + 2,. When K3 > 0, we may make p(2) arbitrarily close to zero for 
any value of b by choosing K3 sufficiently close to K3, so we would not necessarily 
expect to recover (R,O,a;,o:) as b + 0; our calculations demonstrate that this limit 
is singular. Similarly to viscosity model 2 we can identify a global critical Reynolds 
number R,*(P,) with corresponding values a:(Pe), o,'(P,) and K3;(Pe); values of these 
parameters for a range of values of P, are also given by Wall (1996). 

6.4. Model 4 
Figure 12 shows R, - R:, a, - a: and oc - o," plotted as functions of K4 when 
P, = 1. Evidently R, decreases monotonically as K4 increases so that K4 > 0 always 
destabilizes and K4 < 0 always stabilizes the flow. The calculations also show that a: 
is the global minimum value of a, and that o, is a monotonically increasing function 
of K4 and so qualitatively the critical behaviour of this model is the same as that of 
model 1. 

7. Comparison between the viscosity models 
As we have seen, there are significantly different critical-point stability behaviours 

for the four different viscosity models when K1, KZ, K3,  K4 > 0, even though all 
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the viscosity relationships satisfy p ( 0 )  = 1, have p( T )  > 0 everywhere in the channel 
and are monotonically decreasing functions of temperature. In order to compare the 
stability behaviour of all the viscosity models considered here we choose K1, K2, K3, 
and Kq so that p’(0) agrees for the same values of the scaled parameters. Accordingly 
in figure 13 we plot &--R:, a,-a: and O,-CT; against KO = K1 = K2 = bK3 = K4/F2.  
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In order to facilitate comparison with Schafer & Henvig (1993) the Reynolds number 
used in figure 13(a) is one based on flux, that is a Reynolds number based on the ve- 
locity scale V, defined in equation (2.3). We note that for a given KC, > 0 the viscosity 
profiles for the various models are quite different: in particular for both viscosity mod- 
els 1 and 4, as K1 and & respectively increase viscosity falls sharply near the cool wall 
(y = -1) and declines slowly throughout the rest of the channel creating a relatively 
viscous boundary layer near this wall relative to the restAof the channel. Contrastingly, 
with viscosity models 2 and 3 as K2 -+ 1/2 and K3 .+ K3 respectively a relatively less 
viscous layer of fluid forms near the hot wall (y = l), though there must of course 
also be an inner viscous boundary layer in order that the no-slip condition can be 
satisfied. Confirmation that the value of the viscosity at the hot wall is not sufficient 
by itself to determine whether we observe the stabilizing behaviour associated with 
models 2 and 3 is given for example by comparing results for viscosity model 1 with 
K 1  = 0.8304 for which p(2) = 0.19 and R, = 1515 < R: with those of viscosity model 
2 when K2 = 0.405 for which p(2) = 0.19 and R, = 5888 > R,". Figure 13 also demon- 
strates the singular nature of the limit b + 0 since when b = 0 the problem reduces 
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to the isothermal Orr-Sommerfeld problem. In contrast, for all four viscosity models 
R, > R," whenever KO < 0, though for models 1 ,2  and 4 R, increases monotonically as 
KO decreases whereas for model 3 R, reaches a maximum R," and subsequently tends 
to finite limit > R," as KO + -a. We note that, as expected, all the models agree 
at KO = 0, and for all models R, and g, are monotonically decreasing and increasing 
functions of KO respectively in a neighbourhood of KO = 0, while, as is evident from 
figure 13(b), for viscosity models 1 and 4 the critical wavenumber a, has a local 
minimum at KO = 0 whereas for models 2 and 3 it has a local maximum at KO = 0. 

8. Comparison with Potter & Graber (1972) 
In their study Potter & Graber (1972) simplified the eigenvalue problem posed by 

the differential equations (4.5) and (4.6) subject to (4.7) by omitting any perturbation 
to the basic-state temperature. This approximation is also used in more recent studies, 
see, for instance, the work of Pinarbasi & Liakopoulos (1995). This modified fourth- 
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b 
1 

0.5 
lo-’ 
10-2 
10-3 
10-4 
10-5 

k ( b )  
23086 
12986 
6984 
5888 
5784 
5773 
5772 

&(b) 
1.02040 
1.02048 
1.0205 1 
1.02055 
1.02055 
1.02055 
1.02055 

zc(b) 
0.1321 
0.1760 
0.2400 
0.2614 
0.2637 
0.2640 
0.2640 

TABLE 3. Values of &b), &,(b) and 6Jb)  for various values of b when P, = 1. 

order Orr-Sommerfeld eigenvalue problem is recovered by setting T = 0 in equation 
(4.5) and the boundary conditions (4.7). Note that P, is therefore not a parameter of 
Potter & Graber’s problem. It has apparently not been previously noted that Potter 
& Graber’s approximation is exact in the case P, = 0, since in this case equation 
(4.6) becomes T” - a2T = 0 subject to T(+1) = 0, which yields the unique solution 
T = 0. However, when P, # 0 then T is not identically zero and so Potter & Graber’s 
approximation is not exact. Potter & Graber did not consider the case K4 < 0, but 
did find that R, was a monotonically decreasing function of K4 when K4 > 0. 

We can assess the accuracy of Potter & Graber’s numerical technique by setting 
P, = 0 in the present numerical calculations, since in this case the present problem 
reduces to exactly that solved by the earlier authors. In comparing our results for 
R, when P, = 0 with Potter & Graber’s we find that the results differ by up to 
2%, a discrepancy which we must therefore attribute to Potter & Graber’s numerical 
calculations being less accurate than those of the present study. For instance, 
they obtain R, = 7800, 4600, 3900 for K4 = 0, 0.0154728, 0.0216620 respectively, 
which when rescaled appropriately correspond to R, = 5850, 2105, 1516 as compared 
with our corresponding results R, = 5772.2, 2135.5, 1515.8. The accuracy of their 
approximation, as opposed to the accuracy of their numerical technique, may only be 
measured by comparing the approximate results thus obtained with solutions to the 
full problem. Accordingly we calculate the quantity 

for various values of P,. The results of this investigation for viscosity model 4 are 
plotted in figure 14. Schafer & Herwig (1993) found the neglect of temperature 
perturbations to be a good approximation for small lK41; the results shown in figure 
14 confirm this result. Figure 14 also shows that there is no simple relationship 
between the error in using Potter & Graber’s approximation and the value of P,. 

9. Comparison with Schafer & Herwig (1993) 
In their study Schafer & Herwig (1993) considered equations (4.5) and (4.6) in the 

asymptotic limit KO --f 0 and solved the resulting leading- and first-order problems 
numerically. In figure 13(a) we have also plotted the results of Schafer & Herwig 
taken from figure 7 of their paper and the corresponding results of the present 
calculations when P, = 1. As expected all the models agree with Schafer & Herwig’s 
asymptotic results for sufficiently small values of (KO(. Schafer & Herwig concluded 
that R, decreased monotonically with KO and this conclusion is confirmed by our 
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non-asymptotic results provided that IKo I is sufficiently small. We observe that for 
KO > 0 the asymptotic results predict the flow to be less stable than any of our 
non-asymptotic results. 

10. Discussion 
In this study we have investigated the linear stability of parallel shear flow with 

temperature-dependent viscosity in a channel the walls of which are maintained 
at (different) constant temperatures. We considered four different viscosity models 
p ( T ) ,  where, depending on whether the parameter KO is positive or negative, p ( T )  
monotonically decreases or increases respectively as a function of temperature. The 
value KO = 0 corresponds to the isothermal Orr-Sommerfeld problem describing the 
linear stability of plane Poiseuille flow for which we obtained results which were in 
excellent agreement with those of previous authors. For the thermal problem the 
critical Reynolds number R, depends both on KO and P,. For all the viscosity models 
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considered here we found that R, is a monotonically decreasing function of KO near 
KO = 0 in agreement with the asymptotic results of Schafer & Herwig (1993). In most 
of the cases investigated R, was a monotonically decreasing function of KO for a given 
P,, the exceptions being viscosity model 3 for KO < 0, and viscosity models 2 and 3 
for KO > 0. In the first case, R, > R," attains a maximum for a finite negative value of 
KO and R, + k as KO -+ -GO, where k is finite. In the other cases a minimum value 
of R, < R," is attained for a finite positive value of KO and subsequently R, + co as 
KO approaches a finite limit. It may be noted that one consequence of this behaviour 
is the existence of a global critical Reynolds number, R;, for models 2 and 3 for 
which fluids are stable to all disturbances for R, < R,'. 

The distribution of Reynolds stresses across the channel for the flows considered in 
this study have been shown to be similar to the isothermal problem in so far as there 
are peaks in these stresses near both the critical layers, and the stability mechanisms 
of these flows are therefore expected to be similar to those of plane Poiseuille flow. 
However, when KO is non-zero the flow skews towards one side of the channel and 
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the critical layer in this half of the channel shifts towards the nearest channel wall 
with the Reynolds stresses near this layer becoming larger in comparison to the other 
critical layer, which shifts towards the centre of the channel in most cases. Transfer 
of energy from the basic state to the disturbance will thus be greater in the half of 
the channel into which the flow has skewed. 

We found that the stability characteristics of the flow are only weakly dependent on 
the value of P,, and that in all the cases investigated changing the value of P, by many 
orders of magnitude did not alter the qualitative stability characteristics of the flow; 
Schafer & Herwig (1993) described the same behaviour for small JKol. We found the 
approximate solution obtained by Potter & Graber (1 972) by neglecting perturbations 
to basic-state temperature to be exact in the case P, = 0, but only approximately 
correct for non-zero values of P,. However, the relative lack of sensitivity of the full 
solution's eigenvalues to changes in the value of P, ensures that Potter & Graber's 
approximation is accurate over a wide range of values of P,. 

Our findings contain several unexpected results. For instance, we have a situation 
where one flow whose viscosity monotonically decreases across the channel is arbi- 
trarily destabilized by heating whereas another flow whose viscosity monotonically 
decreases across the channel is found to be arbitrarily stabilized by heating. In the 
remainder of this paper we discuss our results in terms of three physical effects, 
namely bulk effects, velocity-profile shape effects and thin-layer effects. 

Bulk effects concern the destabilization or stabilization that occurs in a flow when 
fluid viscosity is uniformly decreased or increased respectively. This destabilization or 
stabilization occurs since the Reynolds number of the flow is increased or decreased 
by a uniform decrease or increase in viscosity respectively. In the present problem 
when KO is positive or negative viscosity throughout the channel is non-uniformly 
decreased or increased respectively and so there is a bulk effect included within this 
change. Bulk effects alone would therefore imply a monotonic decreasing relationship 
of R, with KO and so any exceptions to such a relationship must be due to other 
effects. Particularly surprising are those exceptions which occur when KO > 0 since 
in these cases the flow may be made arbitrarily more stable in comparison with the 
isothermal solution by reducing the viscosity of the fluid everywhere in the channel. 
The bulk effect is easily filtered out of our results by the introduction of a new 



Linear stability of channel flow 129 

4000 . 

3000 - 

0 0.2 0.4 

ir, - iQ 
2000 . 

-0.4 -0.2 

K ,  
4 

FIGURE 15. R, - R, plotted as a function of KO when P, = 1 for the four different viscosity models. 

Reynolds number, R,, based on average viscosity in the channel. If we also base the 
velocity scale given in equation (2.2) on average viscosity then 

(10.1) 

In figure 15 we plot R, against KO (= K1) where values of KO(&), i = 2, ..., 4 for 
each value of Ki, i = 2,. . . ,4 are found such that 

2 2 -  1 ,u(T,Ko(Ki))dT = 1 e-KoTdT, (10.2) 

that is for a given value of KO the average viscosity of all models is the same.? 
Evidently all the R, curves are flat in the neighbourhood of KO = 0 which suggests 
that bulk effects predominate in the limit KO + 0. 

A second effect relevant to the present study is the stabilization which occurs when 
a symmetric basic-state velocity profile becomes skewed. Two notable studies of such 
a phenomenon are those by Potter & Smith (1968) and Mott & Joseph (1968) who 
both found skewed profiles to be more stable than the symmetric Poiseuille profile in 
the isothermal Orr-Sommerfeld problem (though in this problem the skewed profiles 
are not strictly solutions of the governing equations). For instance, Potter & Smith 
found that their critical Reynolds number based on average velocity increased from 
3850 for the Poiseuille profile to 12100 for a quintic-polynomial skewed profile. This 
shape effect is thus stabilizing for both for positive and negative KO. 

A third effect relevant to the present study is that related to the formation of 
thin layers of fluid near a channel wall of differing viscosity relative to the fluid 
in the rest of the channel. Note that while there are many studies of 'thin-layer' 
effects which arise from consideration of the linear stability of the steady, cocurrent 

t Obviously we cannot compare all the models for certain values of KO, for instance for model 
3 we have 1 < p ( T )  < 1 + b when K3 < 0 so we cannot compare results obtained from viscosity 
model 3 for values of s,' e-'opTdT. Similar bounds 
exist for viscosity models 2 and 3 when KO > 0. 

< KoP where KOp is the solution to 1 + b = 
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parallel flow of two immiscible fluids any stability phenomena that rely essentially 
on the presence of an interface between the two fluids will clearly not be relevant 
to the present problem. Renardy (1987) investigated the linear stability of Poiseuille 
flow of one fluid encapsulated by a layer of a second fluid next to either wall 
and made a distinction between eigenvalues that branch from eigenvalues of the 
corresponding one-fluid problem (the linear stability of plane Poiseuille flow) labelled 
‘one-fluid’ modes, and those that arise from the presence of the interfaces. She 
found that the addition of sufficiently thin layers of less-viscous fluid near both walls 
encapsulating the more-viscous core stabilizes the critical one-fluid mode. Renardy & 
Joseph (1985) considered the problem of the Couette flow of two fluids (in just two 
layers) between concentric cylinders and also presented results for one-fluid modes. 
They found that adding a sufficiently thin layer of less-viscous fluid adjacent to the 
inner (rotating) cylinder stabilizes these modes whereas adding a sufficiently thin 
layer of more-viscous fluid adjacent to the inner cylinder destabilizes them. Hooper 
(1989) considered a configuration consisting of two fluids in just two layers in plane 
Poiseuille flow. She found that a thin layer of less-viscous fluid adjacent to one of 
the channel walls destabilizes the one-fluid mode. For yiscosity models 2 and 3 the 
shape of the viscosity profiles as KO -+ 1/2 and KO -+ KO respectively, together with 
the corresponding behaviour of R, suggests that the formation of a thin layer of fluid 
of differing viscosity to the fluid in the rest of the channel may have an important 
influence upon stability. However, the present results suggest that the formation of a 
thin layer of less-viscous fluid adjacent to a channel wall stabilizes the flow for the 
present problem and vice versa, so the ‘thin-layer’ effect described above appears to 
be quite different from those observed in the two-fluid problems. 

To illustrate the above effects in relation to the present problem we consider the 
behaviour of R, and R, with KO and respectively for viscosity model 3. Further 
discussion of the relation of these physical effects to the stability behaviour associated 
with the other viscosity models may be found in Wall (1996). If we consider the 
region K 3  > 0, the bulk effect is destabilizing while the shape effect is stabilizing. 
Figure 13(a) demonstrates that, as for all our results, the bulk effect dominates for 
sufficiently small K 3 .  However, figure 2 shows that in the limit K3 -+ k, a thin layer 
of fluid forms next to the hot wall which is less viscous than the fluid in the rest 
of the channel. We tentatively attribute the unexpected stabilization that occurs in 
this limit to the formation of this less-viscous thin layer of fluid. We note that as 
K 3  -+ k3 the viscosity in this layer becomes increasingly small which, we suggest, 
causes the stabilization due to the presence of the thin layer to become arbitrarily 
large. In contrast, the destabilization caused by the bulk effect is bounded since 

1 + b - [log(l + l/b)]-’ < p < 1 

when b > 0 and 0 < K3 < k3 (or when b < -1 and 2, < K3 < 0), which may 
account for the overall arbitrary stabilization even when bulk effects are included. In 
contrast, the bulk effect for viscosity models 1 and 4 (and viscosity model 3 when 
-1 < b < 0) becomes arbitrarily destabilizing as KO -+ co. For reference we also plot 
values of R, corresponding to various values of b < -1 in figure 15. For b < -1 we 
require K 3  > k3 (for b < 0 the case K 3  < 0 corresponds to viscosity monotonically 
decreasing with temperature) and we again suggest that the less-viscous layer near 
t,he hot wall may be made arbitrarily stabilizing by choosing K3 sufficiently close to 
K3. However, as may be seen from figure 2, the thin layer adjacent to the hot wall 
is not as well defined as those occurring for b > 0 and consequently stabilization of 
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bulk effects occurs for K 3  closer to k3. For example, in terms of KO we have R, = R," 
for KO/&, = 0.39 when b = 0.01, 0.57 ( b  = O.l), 0.69 ( b  = 0.5), 0.93 ( b  = -1.5) and 
0.996 ( b  = -1.1). When K3 < 0 and b > 0 both the bulk effect and the shape effect 
are always stabilizing when 1K31 is finite. As K3 decreases a thin layer of less-viscous 
fluid relative to the rest of the channel is formed near the cold wall which again we 
suggest is stabilizing. However, on this occasion the width of the layer tends to zero 
as K3 -+ -a since p( 7') + 1 + b as K3 + -a for T > 0 with p(0) = 1 while the ratio 
of viscosity of fluid in the thin layer to the rest of the channel is bounded between 
unity and 1 + b. We would therefore argue that the thin layer on this occasion reaches 
a maximum at a finite value of K 3  < 0, and thence becomes negligible as K3 -+ -a. 
Furthermore, as shown in equation (3.12), for viscosity model 3 the velocity profiles 
are symmetrical in the limit K 3  -+ -cc and so the stabilizing shape effect also reaches 
a maximum for finite K3 < 0 and eventually becomes negligible in the limit K3 -+ --GO. 

Taken together, these effects would thus seem to offer a plausible explanation for why 
a maximum in R, = R,** occurs at finite K3 = K3:* < 0 and thence R, subsequently 
tends to & > R," in the limit K3 -+ -a. Figure 15 demonstrates clearly that the 
stabilization for viscosity model 3 for b > 0 as K3 + -a is entirely due to bulk 
effects since Re + Re in this limit, furthermore we note the values of & given in 
table 3 are given by = (1 + b)R," which is due entirely to the bulk effect since 
p( 7') + 1 + b for all T > 0 in the limit as K3 + -m. 

Finally, we note that when b = -1 viscosity models 1 and 3 are identical (with 
K1 = -K3) and figure 15 demonstrates that the results for model 1 may be obtained 
from model 3 in the limit b + -1-. Furthermore, it may be noted that, in terms of 
KO, viscosity model 3 is given by 

-4 

(J) p( T )  = 1 + b( 1 - eKoTIb) = 1 - KO T + 0 (10.3) 

so limb+km p( 7') = 1 - KoT,  and viscosity model 2 may be recovered as a limiting 
case of viscosity model 3 in the limit b -+ fa. 
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